The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten.

نویسندگان

  • A Juszczak
  • S Aono
  • M W Adams
چکیده

Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA protection by histone-like protein HU from the hyperthermophilic eubacterium Thermotoga maritima

In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, whi...

متن کامل

Preliminary X-ray crystallographic analysis of tRNA pseudouridine 55 synthase from the thermophilic eubacterium Thermotoga maritima.

Thermotoga maritima TruB, an enzyme responsible for the formation of pseudouridine in tRNA, has been purified and crystallized by the hanging-drop vapour-diffusion method in 100 mM citrate pH 3.5, 200 mM Li(2)SO(4), 20% glycerol, 13% PEG 8000. Crystals display orthorhombic symmetry, with unit-cell parameters a = 47.39, b = 83.88, c = 98.72 A, and diffract to 2.0 A resolution using synchrotron r...

متن کامل

The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization.

The hyperthermophilic bacterium, Thermotoga maritima, grows up to 90 degrees C by fermenting carbohydrates and it disposes of excess reductant by H(2) production. The H(2)-evolving cytoplasmic hydrogenase of this organism was shown to consist of three different subunits of masses 73 (alpha), 68 (beta) and 19 (gamma) kDa and to contain iron as the only metal. The genes encoding the subunits were...

متن کامل

The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production.

The hyperthermophilic and anaerobic bacterium Thermotoga maritima ferments a wide variety of carbohydrates, producing acetate, CO(2), and H(2). Glucose is degraded through a classical Embden-Meyerhof pathway, and both NADH and reduced ferredoxin are generated. The oxidation of these electron carriers must be coupled to H(2) production, but the mechanism by which this occurs is unknown. The trim...

متن کامل

Aspartate transcarbamylase from the hyperthermophilic eubacterium Thermotoga maritima: fused catalytic and regulatory polypeptides form an allosteric enzyme.

In the allosteric aspartate transcarbamylase (ATCase) from the hyperthermophilic eubacterium Thermotoga maritima, the catalytic and regulatory functions, which in class B ATCases are carried out by specialized polypeptides, are combined on a single type of polypeptide assembled in trimers. The ATCases from T. maritima and Treponema denticola present intriguing similarities, suggesting horizonta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 21  شماره 

صفحات  -

تاریخ انتشار 1991